Some results on extremal vectors and invariant subspaces
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Notes on Invariant Subspaces
The main purpose of this article is to give an approach to the recent invariant subspace theorem of Brown, Chevreau and Pearcy: Every contraction on a Hubert space, whose spectrum contains the unit circle has nontrivial invariant subspaces. Our proof incorporates several of the recent ideas tying together function theory and operator theory. 1. I N T R O D U C T I O N The Jordan structure theor...
متن کاملExtremal Subspaces and Their Submanifolds
It was proved in the paper [KM1] that the properties of almost all points of Rn being not very well (multiplicatively) approximable are inherited by nondegenerate in Rn (read: not contained in a proper affine subspace) smooth submanifolds. In this paper we consider submanifolds which are contained in proper affine subspaces, and prove that the aforementioned Diophantine properties pass from a s...
متن کاملInvariant Subspaces, Quasi-invariant Subspaces, and Hankel Operators
In this paper, using the theory of Hilbert modules we study invariant subspaces of the Bergman spaces on bounded symmetric domains and quasi-invariant sub-spaces of the Segal–Bargmann spaces. We completely characterize small Hankel operators with finite rank on these spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2002
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-02-06326-8